Post-doctoral position H/F
CDD Saclay (Essonne) Energy / Materials / Mechanics
Job description
Détail de l'offre
Informations générales
Entité de rattachement
Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.
Implanté au cœur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international.
Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales :
• La conscience des responsabilités
• La coopération
• La curiosité
Référence
2023-27561Description de l'unité
The Fundamental Research Department conducts outstanding research in the fields of physics, chemistry, biology, climate and environmental sciences. The position is located at the Institut Rayonnement Matière de Saclay (IRAMIS) in the Service de Physique de l'Etat Condensé (SPEC). IRAMIS carries out research in physics and chemistry, at the crossroads of academia and the CEA's missions, as well as societal issues and innovation.
The Service de Physique de l'Etat Condensé (SPEC) is a CEA-CNRS joint research unit with a staff of around 160, conducting multidisciplinary research in condensed matter, from quantum physics to complex systems.
SPEC conducts research in many areas of fundamental physics.
Description du poste
Domaine
Physique de l'état condensé, chimie et nanosciences
Contrat
Post-doctorat
Intitulé de l'offre
Post-doctoral position H/F
Sujet de stage
Dopant and Defect Physics for Device Optimization for Hafnium Oxide based Devices
Durée du contrat (en mois)
12
Description de l'offre
Devices realized with ferroelectric hafnium oxide are silicon compatible, power-efficient, and can be cost-effectively integrated into advanced technology nodes for sensor, nonvolatile memory, logic, and neuromorphic applications. Currently, hafnium-zirconium mixed oxide (HfxZr1-xO2) offers the widest stoichiometry window for fabricating ultrathin ferroelectric films with large remanent polarization.
Still, the film requires oxygen vacancies to stabilize the ferroelectric phase and has reliability issues. An alternative could be to start from stoichiometric, quasi-vacancy-free hafnia and use suitable dopants to optimize the ferroelectric properties.
We will explore the influence of the dopant modulated atomic and electronic structure on the ferroelectric properties. The chosen materials will be optimized by successive simulation, processing, and characterization iterations and integrated into scaled arrays to provide statistically significant results on ferroelectric capacitor performance.
The post-doctoral research will give a better understanding of the influence of dopants on local chemistry, electronic structure, phase composition, and their effects on material and ferroelectric parameters, including recrystallization temperature and remanent polarization.
The work will be done by employing a range of static and operando experiments on bare films and electrode/film interfaces (HAXPES, XPS, PFM, PEEM, XRD) in both laboratory and synchrotron environments.
Operando experiments will correlate device endurance with material physical properties and electrical characterization will be carried out.
The post-doctoral research will give a better understanding of the influence of dopants on local chemistry, electronic structure, phase composition, and their effects on material and ferroelectric parameters, including recrystallization temperature and remanent polarization.
The work will be done by employing a range of static and operando experiments on bare films and electrode/film interfaces (HAXPES, XPS, PFM, PEEM, XRD) in both laboratory and synchrotron environments. Operando experiments will correlate device endurance with material physical properties and electrical characterization will be carried out.
The results will be compared with ab initio calculations and will provide input for physical models based on real devices to predict key metrics such as wake-up, endurance, retention, leakage, and breakdown using vacancy-free doped hafnia.
The D3PO project is a Franco-German collaboration between the CEA, NaMLAb (Dresden) and the Technische Hochschule München, jointly funded by the ANR and the DFG.
Desired profile
Profil du candidat
Candidates should have aPhDinphysicswith good background in oxide materials, ferroelectrics or photoemission spectroscopy.
The initial contract is for 12 months, renewable 12 months.
CV and contact details for two referencesbefore 8th September 2023to :BARRETT Nick (nick.barrett@cea.fr)