INTERNSHIP - Machine Learning for Material Science - 6 months - Saclay H/F
Stage Saclay (Essonne) IT development
Job description
Vacancy details
General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
2024-34334Description de l'unité
Notre Service dédié au Génie Logiciel pour la Simulation (SGLS) réalise et maintient des plateformes génériques, pérennes et open source dans le but :
- de développer des codes de calcul parallèles en mécanique des fluides à différentes échelles (https://sourceforge.net/projects/trust-platform/)
- d'exploiter les codes de calculs à l'aide d'outils de mise en données, prétraitements et postraitements, standards ou spécifiques;
-de fournir aux physiciens les méthodes et outils leur permettant d'optimiser leurs conceptions et de traiter les incertitudes de leurs études de sureté.
Le Laboratoire d'Intelligence Artificielle et de science des Données (autrement nommé le LIAD) réalise et maintient une plateforme générique, pérenne et open source pour fournir à nos physiciens des méthodes et outils leur permettant d'améliorer leurs modèles, d'optimiser leurs conceptions et de traiter les incertitudes de leurs études : la plateforme Uranie.
Uranie ? Oui, notre plateforme permet dans l'approche VVQI (Validation, Vérification et Quantification d'Incertitude) de créer des plans d'expériences adaptés aux besoins d'une analyse de sensibilité, d'un problème d'optimisation ou de la génération d'une base d'apprentissage ou de test pour un modèle de substitution.
Uranie permet de piloter le lancement des codes ou fonctions de manière séquentielle ou avec différentes approches de parallélisation.
Position description
Category
Mathematics, information, scientific, software
Contract
Internship
Job title
INTERNSHIP - Machine Learning for Material Science - 6 months - Saclay H/F
Subject
Optimization Schemes and Machine Learning for Structural Design Applications in Additive Manufacturing
Contract duration (months)
6
Job description
At theInstitute of Applied Sciences and Simulation for Low-Carbon Energies(ISAS) of the CEA, we focus on research and innovation inanalytical sciences: we aim to improve our understanding of the evolution of complex systems and their components in material science. As data analysis plays a pivotal role, we are interested in methodological advancements instatistics,mathematicsandcomputer science, for instance, via the development of state-of-the-art AI models, adapted to our needs.
Metallic gasketsare designed to ensure optimal sealing for components exposed to high pressure and temperature, such as the covers of pressurized water reactors. These gaskets consist of three integral parts, including a rigid spring that forms their core structure. Achieving idealelastic deformationin gaskets can be challenging due to plastic deformation during compression, which impacts their performance. Improving springback properties while minimizing plastic deformation requires exploring innovative approaches, supported by studies tooptimize mechanical responses, and leveraging advanced manufacturing techniques for prototyping. Preceded by a simulation study that provides the geometricoptimum parametersof the structure for a tailored mechanical response, complex structures are prototyped withadditive manufacturing. In order to validate the approach, comparison betweensimulationandexperimentsis realized.
The problem can be framed asoptimization: we wish to find a distribution of physical and geometrical parameters capable of improving our ability to design good experiments efficiently. Differentmachine learningtechniques can be, then, deployed to classify and characterize physical structures for their design optimization. The intern will deal with tasks such as:
- contribute todata exploration and engineeringfor the creation of high-quality reference databases,
- perform asensitivity analysisof the input parameters to determine the impact on the final results (e.g. via Sobol indices and Shapley values),
- modelthe distributions of the parameters (posterior), based on the material response, to improve the experiment design (e.g. through Monte Carlo simulations),
- identify and propagateuncertaintiesand errors in the models, in order to account for experimental reproducibility and trustworthiness of the measurements,
- perform anautomatic classificationof different material structures using machine learning methods for tabular (e.g. XGBoost) and non structured data (e.g. neural networks) from the simulations and the experiments.
The internship will be a collaboration between theLaboratory of Artificial Intelligence and Data Science(LIAD) and theLaboratory of Engineering of Surfaces and Lasers(LISL). The intern will have the possibility to work with scientists with different backgrounds, such as engineering, physics, and AI. They will also have the possibility to get familiar with tools developed by different laboratories.
Methods / Means
additive manufacturing, Bayesian optimization, data engineering, AI, machine learning
Applicant Profile
We look for a passionate student at the end of their studies (e.g. the French M2 level), with a good understanding ofstatistical methodsanddata analysisfor analytical science. Good knowledge of ascientific programming languageis mandatory (e.g. Python, R, C++). Previous experience in machine learning methods is appreciated, but unnecessary. A basic understanding of physics (material science) will be considered a plus.
Position location
Site
Saclay
Job location
France, Ile-de-France, Essonne (91)
Location
Candidate criteria
Languages
- French (Fluent)
- English (Intermediate)
Requester
Position start date
01/01/2025